3 resultados para genetic variants

em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genome wide association studies (GWAS) have identified several low-penetrance susceptibility alleles in chronic lymphocytic leukemia (CLL). Nevertheless, these studies scarcely study regions that are implicated in non-coding molecules such as microRNAs (miRNAs). Abnormalities in miRNAs, as altered expression patterns and mutations, have been described in CLL, suggesting their implication in the development of the disease. Genetic variations in miRNAs can affect levels of miRNA expression if present in pre-miRNAs and in miRNA biogenesis genes or alter miRNA function if present in both target mRNA and miRNA sequences. Therefore, the present study aimed to evaluate whether polymorphisms in pre-miRNAs, and/or miRNA processing genes contribute to predisposition for CLL. A total of 91 SNPs in 107 CLL patients and 350 cancer-free controls were successfully analyzed using TaqMan Open Array technology. We found nine statistically significant associations with CLL risk after FDR correction, seven in miRNA processing genes (rs3805500 and rs6877842 in DROSHA, rs1057035 in DICER1, rs17676986 in SND1, rs9611280 in TNRC6B, rs784567 in TRBP and rs11866002 in CNOT1) and two in pre-miRNAs (rs11614913 in miR196a2 and rs2114358 in miR1206). These findings suggest that polymorphisms in genes involved in miRNAs biogenesis pathway as well as in pre-miRNAs contribute to the risk of CLL. Large-scale studies are needed to validate the current findings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background:Human papillomavirus (HPV) variants differ in their biological and chemical properties, and therefore, may present differences in pathogenicity. Most authors classified variants based on the phylogenetic analysis of L1 region. Nevertheless, recombination in HPV samples is becoming a usual finding and thus, characterizing genetic variability in other regions should be essential. Objectives:We aimed to characterize the genetic variability of HPV 18 in 5 genomic regions: E6, E7, E4, L1 and the Upstream Regulatory Region (URR), working with both single infection and multiple HPV infection samples. Furthermore, we aimed to assess the prevalence of HPV 18 variants in our region and look for possible existence of recombination as well as analyze the relationship between these variants and the type of lesion. Methods: From 2007 to 2010, Clinical Microbiology and Infection Control Department analyzed 44 samples which were positive for HPV 18. Genetic variability was determined in PCR products and variants were assigned to European, Asian-amerindian or African lineage. Recombination and association of variants with different types of lesion was studied. Results: Genetic analysis of the regions revealed a total of 56 nucleotide variations. European, African and Asian-amerindian variants were found in 25/44 (56.8%), 10/44 (22.7%) and 5/44 (11.4%) samples, respectively. We detected the presence of recombinant variants in 2/44 (4.5%) cases. Samples taken from high-grade squamous intraepithelial lesions (H-SIL) only presented variants with specific-african substitutions. Conclusions: Multiple HPV infection, non-european HPV variants prevalence and existence of recombination are considered risk factors for HPV persistence and progression of intraepithelial abnormalities, and therefore, should be taken into consideration in order to help to design and optimize diagnostics protocols as well as improve epidemiologic studies. Our study is one of the few studies in Spain which analyses the genetic variability of HPV18 and we showed the importance of characterizing more than one genomic region in order to detect recombination and classify HPV variants properly

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Colorectal cancer is one of the most frequent neoplasms and an important cause of mortality in the developed world. Mendelian syndromes account for about 5% of the total burden of CRC, being Lynch syndrome and familial adenomatous polyposis the most common forms. Lynch syndrome tumors develop mainly as a consequence of defective DNA mismatch repair associated with germline mutations in MLH1, MSH2, MSH6 and PMS2. A significant proportion of variants identified by screening these genes correspond to missense or noncoding changes without a clear pathogenic consequence, and they are designated as "variants of uncertain significance'', being the c.1852_1853delinsGC (p.K618A) variant in the MLH1 gene a clear example. The implication of this variant as a low-penetrance risk variant for CRC was assessed in the present study by performing a case-control study within a large cohort from the COGENT consortium-COST Action BM1206 including 18,723 individuals (8,055 colorectal cancer cases and 10,668 controls) and a case-only genotype-phenotype correlation with several clinical and pathological characteristics restricted to the Epicolon cohort. Our results showed no involvement of this variant as a low-penetrance variant for colorectal cancer genetic susceptibility and no association with any clinical and pathological characteristics including family history for this neoplasm or Lynch syndrome.